SAUTER CATALOGUE 2020

Mobile ultrasound hardness testing device SAUTER HO

Premium UCI hardness testing device for Rockwell, Brinell and Vickers

Features

- **Application:** This ultrasound hardness testing device is ideally suited for mobile hardness testing, where the main emphasis is on obtaining rapid and precise results.
- **Principle:** The SAUTER HO measures by using a vibrating rod which vibrates at ultrasonic frequency and is pressed onto the sample at a defined test force. At the lower end there is a Vickers indenter. Its resonant frequency increases as soon as an indentation is created when it comes into contact with the sample. Through appropriate adjustment of the device, the resulting change in resonant frequency is matched with the corresponding Vickers hardness.
- Examples: The HO ultrasound hardness testing system is primarily used for measuring small forgings, castings, welding points, punched parts, casting tools, ball bearings and the flanks of gear wheels as well as for measuring the influence of warmth or heat
- Advantages compared with Rockwell and Brinell: Means that the testing is almost nondestructive, small penetrations means that the testing is less destructive
- Advantages compared with Vickers: Demanding optical measuring is not required. You can therefore carry out measurements directly on-site, for example, on a permanently installed workpiece

- Advantages compared with Leeb: The high requirements on the weight of the test object can be widely omitted
- **Standards:** The device meets following technical standards: DIN 50159-1-2008; ASTM-A1038-2005; JB/T9377-2013
- Measurement data memory saves up to 1000 measurement groups each with 20 individual values
- Mini statistics function: Display of the measuring result, the number of measurements, the maximum and minimum value as well as the average value and the standard deviation
- Calibration: The device can be set to both standard hardness test blocks and also to up to 20 reference calibration values. When doing this it is possible to measure different materials quickly, without having to re-adjust the device to the individual materials
- II Scope of delivery: Standard block for calibration, USB cable, Display unit, UCI sensor unit, transport case, software to transfer the saved data to the PC, accessories

Technical data

- Measuring ranges: HRC: 20,3-68; HRB: 41-100; HRA: 61-85,6; HV: 80-1599; HB: 76-618; Tensile strength: 255-2180 N/mm²
- Measuring precision: \pm 3 HV; \pm 1,5 HR; \pm 3 % HB
- Measuring time: adjustable from 1-5 sec.
- Display units: HRC, HV, HBS, HBW, HK, HRA, HRD, HR15N, HR30N, HR45N, HS, HRF, HR15T, HR30T, HR45T, HRB.
- Rechargeable battery integrated, standard, operating time up to 12 h without backlight, charging time approx. 8 h
- Minimum weight of the test object: 300 g for direct measurement with the sensor (included); 100 g with support ring (optional)
- · Minimum thickness of the test object: 2 mm
- Minimum dimensions the test surface size around: approx. 5×5 mm (recommended)
- Overall dimensions W×D×H 160×83×28 mm
- Permissible ambient temperature -10 °C/40 °C
- Net weight approx. 0,93 kg

Mobile ultrasound hardness testing device SAUTER HO

Accessories

- External impact sensor Type D, Leeb standard sensor, can be reordered at any time, SAUTER AHMO D
- **3 Support ring, flat,** SAUTER HO-A04
- Support ring, small cylinder, Ø 8-20 mm, SAUTER HO-A05
- Support ring, large cylinder, Ø 20-80 mm, SAUTER HO-A06
- **Deep-hole protective cover**, SAUTER HO-A07
- Calibration and adjustment plate (hardness test blocks) with defined and tested steel hardness for regular testing and adjustment of hardness testing devices. The hardness values are indicated. A key feature of the plates is the low-granular, homogenous finish of the steel, Ø 90 mm, including calibration certificate, each 28 to 35 HRC: SAUTER HO-A09 38 to 43 HRC: SAUTER HO-A10 48 to 53 HRC: SAUTER HO-A11 58 to 63 HRC: SAUTER HO-A12
- Is test stand for repeatable movements during testing. In this way you can avoid errors which could occur with manual handling of the sensor. This ensures even more stable measurements and more precise measuring results. Smooth-running mechanical system, stroke length 34 mm, maximum height of the test object within the test bench 240 mm, swivel probe device for measurements outside the base plate, very robust construction, net weight approx. 9 kg, SAUTER HO-A08

STANDARD							OPTION
	USB	STATISTIC	SOFTWARE	-√+ ⊙ TOL		1 DAY	ISO +4 DAYS

Model	Hardness scale	Min. weight of test item	Min. thickness of test item	Option Factory calibration certificates
SAUTER		g	mm	KERN
HO 1K	HV 1	300	2	961-270
HO 2K	HV 2	300	2	961-270
HO 5K	HV 5	300	2	961-270
HO 10K	HV10	300	2	961-270

SAUTER CATALOGUE 2020

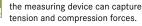
Pictograms

Adjusting program (CAL): For quick setting of the instrument's accuracy. External adjusting weight required.

Calibration block:

standard for adjusting or correcting the measuring device.

Peak hold function: capturing a peak value within a measuring process.



continuous capture and display of measurements

Push and Pull:

Scan mode:

Length measurement:

captures the geometric dimensions of a test object or the movement during a test process.

SCALE

Focus function:

increases the measuring accuracy of a device within a defined measuring range.

Internal memory:

to save measurements in the device memory.

Data interface RS-232:

bidirectional, for connection of printer and PC.

Data interface USB:

To connect the measuring instrument to a printer, PC or other peripheral devices.

WLAN data interface:

To transfer data from the balance to a printer, PC or other peripherals.

Data interface Infrared:

To transfer data from the measuring instrument to a printer, PC or other peripheral devices.

Your KERN specialist dealer:

Control outputs (optocoupler, digital I/O): to connect relays, signal lamps, valves, etc.

to connect a suitable peripheral device for ANAL OG analogue processing of the measurements

using the saved values, the device calculates STATISTIC statistical data, such as average value, standard deviation etc.

to transfer the measurement data from the device to a PC

a printer can be connected to the device to PRINT print out the measurement data.

Network interface: Ċ

For connecting the scale to an Ethernet LAN network.

KCP
PROTOCO

KERN Communication Protocol (KCP): It is a standardized interface command set for KERN balances and other instruments, which allows retrieving and controlling all relevant parameters and functions of the device. KERN devices featuring KCP are thus easily integrated with computers, industrial controllers and other

GLP/ISO record keeping:

of measurement data with date, time and serial PROTOCOL number. Only with SAUTER printers

Measuring units:

digital systems.

Weighing units can be switched to e.g. non-metric at the touch of a key. Please refer to website for more details.

Measuring with tolerance range

(limit-setting function): Upper and lower limiting can be programmed individually. The process is supported by an audible or visual signal, see the relevant model

FAST-MOVE

The mechanical movement is carried

out by a synchronous motor (stepper).

the total length of travel can be covered by a single lever movement.

DAkkS calibration possible:

The time required for DAkkS calibration is shown in days in the pictogram.

Factory calibration:

The time required for factory calibration is specified in the pictogram.

Package shipment:

1 DAY

The time required for internal shipping preparations is shown in days in the pictogram.

Pallet shipment: The time required for internal shipping

preparations is shown in days in the pictogram.

Motorised drive:

ZERO:

→N←

(IIII)

230 V

-6

SAUTER